238 research outputs found

    The UCSC Archaeal Genome Browser: 2012 update

    Get PDF
    The UCSC Archaeal Genome Browser (http://archaea.ucsc.edu) offers a graphical web-based resource for exploration and discovery within archaeal and other selected microbial genomes. By bringing together existing gene annotations, gene expression data, multiple-genome alignments, pre-computed sequence comparisons and other specialized analysis tracks, the genome browser is a powerful aggregator of varied genomic information. The genome browser environment maintains the current look-and-feel of the vertebrate UCSC Genome Browser, but also integrates archaeal and bacterial-specific tracks with a few graphic display enhancements. The browser currently contains 115 archaeal genomes, plus 31 genomes of viruses known to infect archaea. Some of the recently developed or enhanced tracks visualize data from published high-throughput RNA-sequencing studies, the NCBI Conserved Domain Database, sequences from pre-genome sequencing studies, predicted gene boundaries from three different protein gene prediction algorithms, tRNAscan-SE gene predictions with RNA secondary structures and CRISPR locus predictions. We have also developed a companion resource, the Archaeal COG Browser, to provide better search and display of arCOG gene function classifications, including their phylogenetic distribution among available archaeal genomes

    Insertion Sequence Inversions Mediated by Ectopic Recombination between Terminal Inverted Repeats

    Get PDF
    Transposable elements are widely distributed and diverse in both eukaryotes and prokaryotes, as exemplified by DNA transposons. As a result, they represent a considerable source of genomic variation, for example through ectopic (i.e. non-allelic homologous) recombination events between transposable element copies, resulting in genomic rearrangements. Ectopic recombination may also take place between homologous sequences located within transposable element sequences. DNA transposons are typically bounded by terminal inverted repeats (TIRs). Ectopic recombination between TIRs is expected to result in DNA transposon inversions. However, such inversions have barely been documented. In this study, we report natural inversions of the most common prokaryotic DNA transposons: insertion sequences (IS). We identified natural TIR-TIR recombination-mediated inversions in 9% of IS insertion loci investigated in Wolbachia bacteria, which suggests that recombination between IS TIRs may be a quite common, albeit largely overlooked, source of genomic diversity in bacteria. We suggest that inversions may impede IS survival and proliferation in the host genome by altering transpositional activity. They may also alter genomic instability by modulating the outcome of ectopic recombination events between IS copies in various orientations. This study represents the first report of TIR-TIR recombination within bacterial IS elements and it thereby uncovers a novel mechanism of structural variation for this class of prokaryotic transposable elements

    Intense Transpositional Activity of Insertion Sequences in an Ancient Obligate Endosymbiont

    Get PDF
    The streamlined genomes of ancient obligate endosymbionts generally lack transposable elements, such as insertion sequences (IS). Yet, the genome of Wolbachia, one of the most abundant bacterial endosymbionts on Earth, is littered with IS. Such a paradox raises the question as to why there are so many ISs in the genome of this ancient endosymbiont. To address this question, we investigated IS transpositional activity in the unculturable Wolbachia by tracking the evolutionary dynamics and history of ISWpi1 elements. We show that 1) ISWpi1 is widespread in Wolbachia, being present in at least 55% of the 40 sampled strains, 2) ISWpi1 copies exhibit virtually identical nucleotide sequences both within and among Wolbachia genomes and possess an intact transposase gene, 3) individual ISWpi1 copies are differentially inserted among Wolbachia genomes, and 4) ISWpi1 occurs at variable copy numbers among Wolbachia genomes. Collectively, our results provide compelling evidence for intense ISWpi1 transpositional activity and frequent ISWpi1 horizontal transmission among strains during recent Wolbachia evolution. Thus, the genomes of ancient obligate endosymbionts can carry high loads of functional and transpositionally active transposable elements. Our results also indicate that Wolbachia genomes have experienced multiple and temporally distinct ISWpi1 invasions during their evolutionary history. Such recurrent exposition to new IS invasions may explain, at least partly, the unusually high density of transposable elements found in the genomes of Wolbachia endosymbionts

    The influence of the accessory genome on bacterial pathogen evolution

    Get PDF
    Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution

    Reconstitution of a functional IS608 single-strand transpososome: role of non-canonical base pairing

    Get PDF
    Single-stranded (ss) transposition, a recently identified mechanism adopted by members of the widespread IS200/IS605 family of insertion sequences (IS), is catalysed by the transposase, TnpA. The transposase of IS608, recognizes subterminal imperfect palindromes (IP) at both IS ends and cleaves at sites located at some distance. The cleavage sites, C, are not recognized directly by the protein but by short sequences 5′ to the foot of each IP, guide (G) sequences, using a network of canonical (‘Watson–Crick’) base interactions. In addition a set of non-canonical base interactions similar to those found in RNA structures are also involved. We have reconstituted a biologically relevant complex, the transpososome, including both left and right ends and TnpA, which catalyses excision of a ss DNA circle intermediate. We provide a detailed picture of the way in which the IS608 transpososome is assembled and demonstrate that both C and G sequences are essential for forming a robust transpososome detectable by EMSA. We also address several questions central to the organization and function of the ss transpososome and demonstrate the essential role of non-canonical base interactions in the IS608 ends for its stability by using point mutations which destroy individual non-canonical base interactions

    Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysis

    Full text link
    Aerosols in Titan's atmosphere play an important role in determining its thermal structure(1-3). They also serve as sinks for organic vapours(4) and can act as condensation nuclei for the formation of clouds(5,6), where the condensation efficiency will depend on the chemical composition of the aerosols(5,7). So far, however, no direct information has been available on the chemical composition of these particles. Here we report an in situ chemical analysis of Titan's aerosols by pyrolysis at 600 degrees C. Ammonia (NH3) and hydrogen cyanide (HCN) have been identified as the main pyrolysis products. This clearly shows that the aerosol particles include a solid organic refractory core. NH3 and HCN are gaseous chemical fingerprints of the complex organics that constitute this core, and their presence demonstrates that carbon and nitrogen are in the aerosols.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62786/1/nature04349.pd

    Insights into the Transposable Mobilome of Paracoccus spp. (Alphaproteobacteria)

    Get PDF
    Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial evolution
    corecore